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Abstract
Motivated by the description of the graphene electronigcstire in terms of the relativistic Dirac equa-
tion, a generalization to four dimensions yields a strittlgal fermion action describing two species and
possessing an exact chiral symmetry. This is the minimumbauraf species required by the well known

“no-go” theorems.

PACS numbers: 11.15.Ha, 11.30.Rd, 71.10.Fd, 71.20.-b



The structure of graphene, a single layer of graphite congisf a hexagonal lattice of carbon
atoms, has attracted considerable attention recentlyfbmtihthe experimental front and the fact
that the low electronic excitations are described by tha®equation for massless fermions [1].
From the point of view of a particle physicist, this struetinmas two particularly striking features.
First, the massless structures are robust for topologeaians related to chiral symmetry. Second,
it achieves this symmetry in a manner that involves the mimmmumber of effective massless
fermions required by the famous “no-go theorems” for lattbiral symmetry [2, 3].

Given the importance of chiral symmetry in particle physacsl the difficulties with imple-
menting it with a lattice regularization [4], it is natura ask whether these properties of the
graphene electronic structure can be extended to four dilmes Indeed, this is possible, and
provides a remarkable fermion action with an exact chiradsyetry and manifesting two species
of massless states, the minimal number consistent witlkalckymmetry. This action is strictly
local and thus will be vastly faster in simulations than eitthe overlap operator or domain wall
fermions, the only other known ways to have chiral symmeiitir wnly two flavors.

Recently a chiral gauge theory structure on two dimensigraghene has been proposed [5].
Given that we do not yet have a lattice regularization of taagard model, it would be particularly
interesting if this construction could be extended to the fimensional lattices presented here.

Although well known, it is useful to briefly review the stamdawo-dimensional graphene
band structure. We will closely parallel this derivation flee four-dimensional case. Ignored here
are all but the pi orbitals in a tight binding approximatioQur electrons hop from neighbor to
neighbor around a fixed underlying hexagonal lattice. Auibous choice of coordinates makes
the problem straightforward to solve. As sketched in Fig, ¢tient a graphene surface with one
third of the bonds horizontal, one third sloping up at 60 degr and one third sloping down. It
is then convenient to collapse the atoms at the oppositeadredsch horizontal bond together and
call this unit a lattice “site,” as enclosed in ellipses ie figure. For each site, lef’ denote the
creation operator for an electron on the left atom, and spordingly let' create an electron on

the right atom. The commutation relations are the usual

T t
[axl,sz e&'l,xlz]Jr = [bX17X27 bx’l,x’2]+ = 5X1,x’155< X (1)

with thea type operators anti-commuting with thé. Finally, it is useful to label the sites using
a non-orthogonal coordinate system with axgsloping up at 30 degrees intersecting the corre-

sponding sites, and similarkg sloping down at 30 degrees. All of this is illustrated in Kib).
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FIG. 1: Organize the graphene structure into two-atom $8itevolving horizontal bonds as shown by
ellipses. Call the left hand atom of each site tygp@nd the right hand atom tyge The coordinates of the

sites are labeled along the non-orthoganahndx, axes.

With these conventions, the Hamiltonian of interest ineslwnly nearest neighbor hoppings
betweera andb type sites
H=K le,xz a)-‘(-]_,XszLXZ + b)-‘(-l,XzaXLXZ
+a>t1+1,xz le,Xz + bllfl,xz Ay % (2)
"’all,xz—lbxl,xz + bl1,X2+laxlaX2'
HereK is the basic hopping parameter. The phasK @ a convention; here | consider positive

real hopping. To diagonalize this Hamiltonian go to momeangpace

_ (" dp: dpz P11 dP2Xe 5
Ay % = _n 2 2m e e Apy,po- (3)
This brings the Hamiltonian to the simple form

H=K[% 9 92 &, p,bpp(lte’Ptel®)

—nom 2w Cpupe | | 4)
+b, o, 8pyp,(1+€MPL 4 e7'P2),
The problem reduces to diagonalizing a two by two matrix ofrfo
0 z
H(pl,p2)=K<z* O) (5)
with
z=14+e P14 etiP2, (6)
The energy eigenvalues are
E(p1, p2) = £K|Z. (7)
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From Eq. (6) it is easy to see that the energy vanishes onlyaapoints,p; = pp = £271/3.

The robustness of these isolated points can be seen by eangidontours of constant energy.
These are closed curves of constatn p;, p2 space . The important point is that for such a
contour near one of the zero energy solutions, the phagevodps non-trivially around a circle.
This non-contractable mapping indicates that on redudiegenhergy and shrinking the curve to a
point, the magnitude of the energy at this point must vanists is the mechanism that prevents
a band gap from opening in the spectrum.

This robustness is associated with a chiral symmetry. Bectne hoppings are always between
aandb type sites, we can change the sign of the energy by tdkirg—b. This is equivalent to the
statement thatz anti-commutes with the Hamiltonian. For the four-dimensilogeneralization,
this will become the anti-commutation gf with the Dirac operator.

We wish to extend this formalism to the four-dimensionaleca¥ve want an operatdd to
insert into the Euclidian path integral via the fermion aniyDy. For low energy excitations this
operator should reduce to two massless Dirac fermions,asdaduction should be robust due to
a chiral symmetry. At the outset impogehermeticityysDys = DT. Using this we can construct a
hermitian “Hamiltonian”

H =D (8)

with which we will parallel the two dimensional discussidhis important to remember that this
is not the Hamiltonian of the three dimensional quantumesystout a convenient operator for
leading us back t®. In four-dimensional space, the analog of the curves of temiSenergy”
are three dimensional manifolds. To maintain a topologacgbment in analogy to the two di-
mensional case, we want to consider the situation where the$aces wrap non-trivially around
athree sphere, &. For this purpose it is quite natural to maintain the form qf &), but extend

zto two by two matrices in a quaternionic space. That is, take
z=a+lid-0 (9)

with a, a real four vector and denotes the traditional Pauli matrices. Then vanishinggne
states will correspond ta,, vanishing as a four vector. The goal is to construct our Hamighn

so that that constant energy surfaces that wrap around zergyepoints within the Brillouin zone
will involve a non-trivial mapping in the quaternionic spacBecause of the periodicity of the
Brillouin zone, these zero energy points must appear irsgsorthat the overall wrapping will

vanish. Indeed, this is the famous no-go theorem [2, 3].
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We want a construction giving precisely one and only one ga&h We also want to involve
only local couplings, i.e. with only simple trigonometrigrictions of the momenta appearing
in the dispersion relations. Because of the robustnesseaféios, if such a construction exists,
it is clearly not unique. To find one such solution, start vatihegular four-dimensional lattice
and perform a Fourier transform. Now there will be four motaemvariablesps, p2, p3, ps, all
ranging from—rrto 1. A convenient form to explore is

z=—12C 4P gP20k | g P30k | g1Pa0x
+e/P10y 4 g71P20y 4 g1Paly 4 Paly (10)
4+eP10z | @=iP207 4 P30z 4 o=1Pa0z,
HereC is a parameter whose value will be discussed later. Theuwseaponentials can be ex-
panded usingP% = cogp) +iag;sin(p). For zero energy states we neetb vanish. This gives
four equations corresponding to the coefficients of 1 ant eaganishing. From the coefficients
of the Pauli matrices we have
sin(p1) +sin(p2) —sin(p3) —sin(ps) =0
sin(pz) — sin(pz) — sin(ps) +sin(ps) = 0 (11)
sin(p1) —sin(p2) + sin(ps) — sin(ps) = 0.
These three relations imply the sines of all the momentumpamants must be equal. Pickiipg
arbitrarily, each othep, must either equab, or 71— p;. Now turning to the constant part nfwe
have
cogp1) + cogpz) 4 cogp3) 4 cogpa) = 4C. (12)

Since the cosine function is bounded by unity, we clearlyttaleC < 1 to have any solutions.
To resolve thep; < m— p; ambiguity it is convenient to ask that ¢@s) be positive. Imposing the
constrainiC > 1/2 ensures this. We will later discuss some interesting fipetioices foiC.

So with these constraints on the constathere are exactly two zeros of energy in the Brillouin
zone. These occur when all componentgeaire equal and satisfy cgs) = C. The two solutions
differ in the sign ofp. Picking the positive sign for convenience, it is useful xpa&nd about the

zero
Pu=P+0dyu (13)
with cog p) = C andpg> 0. DefiningS= sin(f) = v'1—C2, we have

cog py) = Ccos(qy) — Ssin(gy) = C— Say, +O(c?)

14
sin(py) = Scog(qy) +Csin(qy) = S+Cay +O(g?). -
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Inserting all this into our quaternion

z=—-3501+02+ 03+ 0a)
+iCox(q1+ 02 — 0z — Oa)

. (15)
+iCoy(t1 — 02 — Gz + Ga)
HCOoy(h— G+ a3 —aa)  +O(cP).
At this point we introduce a convention for the Dirac gammarioas
y=0x®0
Ya=—0y®1 (16)

¥o=0:01=Vv1)o)3Ys
The direct product notation here is defined so §aas diagonal with—1 in the last two places.

With these conventions our Euclidean Dirac operator take$drm

D=C(h1+02—03—h)ivs
+C(aL— G2 — a3+ Q)2
+C(a1— G2+ 03— Qa)iys

+3S(01 + G2 + O3+ 0a)iya + O(0?).

(17)

This reproduces the desired massless Dirac equation if eveifgd new momenta

ki=C(01+ 02— 03— 0a)
ko =C(Q1— 02— 03+ 04)
ks =C(d1— G2+ 03— 0a)
kg = 3S(G1 + G2+ 03 + Ga).-

(18)

Proper Lorentz invariance requires symmetry betweeR'shd his implies that the original lattice,
as generated by translations using dtse will in general be distorted from simple hyper-cubic.

Inverting the above relation enables us to study the phiyangdes between the original lattice

directions o= +kl-z(k:2+k3 n %S
op = Hagee 4 Ju (19)
O = =95t 4 fo
Q4 = ;klzgziks + %S

Since the&k coordinates should be orthogonal, we can compute the aateebn two of the axes

g-qj 1-108
g2 1+26%°

(20)



The original axes can be made orthogona¥if= 1/10. This corresponds 16 = 3y/10/10 =
0.94868 . ., consistent with the constraints. With this choice of camaites, gauging the theory
is straightforward. Because the starting links are ortimagjove can use the usual Wilson gauge
action with group elements on links interacting with the glieplaquette action.

Another especially interesting choice 0rgives a closer analogy with graphene. Imagine the
diagonal components of our matitkon one site to be spread along a bond connecting two atoms
in thek, direction, similar to the construction for graphene intkchin Fig. (1). With our Dirac
matrix conventions, one end of this bond would contain thgeafpwo components aff while the
other end would provide the lower components. A hop in eithexction along this bond gives
a factor of 12Cy;,, coming from the constai@ in Eq. (10). This structure would be particularly

symmetric if the angles between all five bonds attached td@n were equal. This occurs when

314
C= 1—\/4_ =0.80178.., (21)

which is still consistent with the constraints.

This structure has an appealing intuitive geometric inggtion in terms of bonds along one
direction, analogous to the horizontal bonds in Fig. (1itspd at an atom into four bonds, going
off symmetrically into four-space to join other horizonbainds displaced in the various directions.
While in two dimensional graphene each carbon is coupledwssimcally to three neighbors, here
each atom is directly coupled to 5 others. The entire latidden built up of hexagonal chairs
with an inter-bond angle of 104775... degrees. The five fold symmetry associated with this
particular choice o€ should help to reduce lattice artifacts. Note that the diadrattice in three
dimensions represents an intermediate case, where onespbisdnto three giving each atom a
tetrahedral environment.

This choice ofC somewhat complicates the gauging procedure. On spreduirig bonds,
the plaquettes of the starting theory become hexagonair&haithin the lattice. To keep all
directions equivalent, the action should now include tefinos all further six link chairs involving
only the four original directions. Without these terms tpeed of light associated with gluons or
fermions will not be equal. The lattice symmetry requirdssath terms to have the same gauge
coupling. Although to make the analogy complete one couldduce additional link matrices in
the gauge group for thie, direction, this is not necessary since these can be thodigis loeing
gauge fixed to unity.

From the standpoint of computational efficiency, it doesapgear to matter much what value
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of C is chosen, within the constraints. Near the limit<Qof 1 andC = 1/2 one should expect
lattice artifacts to increase. The hyper-cubic value 31/10/10 is presumably closest to conven-
tional lattice gauge ideas and is simplest to gauge. On trex biand, the valu@ = 3v/14/14 may
have smaller lattice artifacts due to its high symmetry.edtfalues ofC will require adjusting the
strength of six link terms in the action to maintain the sapees of light for the fermions and the
gluons.

Returning from reciprocal to position space, the fermiaution involves several terms. First
from the collapsedk, bond there is a site diagonal termiC&y,p. Then for a forward step in
the various directions we pick up a factor of the hopping pei@rK multiplied by different

combinations of gamma matrices, as listed here:

for a hop in direction 1. +y1+ %+ 5 —3iys

for a hop in direction 2: +y1 — y»— 5 —3iys 22)

for a hop in direction 3: —y1 — o+ 53— 3iys

for a hop in direction 4: —y1 + % —y3—3iys
Keeping the operatdd antihermetian, the reverse hops involve minus the congugithese fac-
tors. Note the factor of in front of y; which is absent for thg;_3 terms. This twisting of the
phase gives rise to the required factors of sin or cos in Bd9. &nd Egs. (12). This action is
only marginally more complicated than that of naive fernsioso, it should be easy to insert into
simulations.

Chiral symmetry is manifested in the exact anti-commuiatibys with D. This is actually a
flavored chiral symmetry since the expansion about the negsatlution forp flips the sign of the
gamma matrix associated wikg. Note that as with naive fermionB), is purely anti-hermitian.
The chiral symmetry can easily be broken with the additioa tdrm proportional tgs to H that
splits the degeneracy of the typeand typeb sites. This gives each physical fermion a common
mass. The further addition of a Wilson type mass term woultbnsplitting the degeneracy of
the two species. Note that if we wish to extend this formalismore flavors, the no-go theorem
restricts us to an even number of species. The best we can tude flavors is to start with four

and, using a chiral symmetry breaking operator, make oneedfidvors heavier.
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